

Tetrahedron Letters 40 (1999) 8415-8418

Palladium(0)-catalyzed tandem cyclization of N-(2',4'-dienyl)alkynamides to α -alkylidene- γ -lactams

Xu Xie and Xiyan Lu *

Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 354 Fengling Lu, Shanghai 200032,
People's Republic of China

Received 22 June 1999; accepted 24 August 1999

Abstract

 α -Alkylidene- γ -lactams were synthesized from N-(2',4'-dienyl)alkynamides via Pd(0)-catalyzed reactions in moderate to good yields. © 1999 Elsevier Science Ltd. All rights reserved.

Keywords: α-alkylidene-γ-lactams; palladium(0); π-allyl palladium complex.

The γ -lactam skeleton is commonly found in molecules of medicinal importance. In particular, α -alkylidene- γ -lactams show cytotoxicity, antitumor and antiinflamation activities but lower toxicity when compared with the corresponding α -alkylidene- γ -lactones. Their potential clinical utility has stimulated much interest in construction of this kind of molecule.

In our studies of Pd(II)-catalyzed reactions of electron-deficient alkynes, we have developed a series of stereoselective cyclization methods to build α -alkylidene- γ -lactones⁵ and γ -lactam analogues.⁶ In these reactions, a Pd(II) catalyst was used because of the possible cleavage of the allylic carbon-oxygen bond in the starting allylic alkynoates in the presence of a Pd(0) catalyst.⁷ On the contrary, an allylic carbon-nitrogen bond is generally stable to Pd(0) species. Thus, it is possible to use a Pd(0) catalyst to construct γ -lactams. Here, we wish to report our recent results in the synthesis of α -alkylidene- γ -lactams via Pd(0) catalyzed reactions.

At first, the reaction of PhI and the precursor 1 was carried out under typical Pd(0) catalyzed reaction conditions (10 mol% of Pd(OAc)₂, 20 mol% of PPh₃ and 1.5 equiv. of Et₃N in MeCN, 70°C for 2 h). The double-bond isomerized products (2a, 2b) were obtained in low yield due to the easy polymerization of the products. If Ag_2CO_3 was used,⁸ a mixture of 2a and 2a' (the normal product without isomerization of the double bond) was obtained in a total yield of 42%. Thus, the simple cyclization terminated by β -H elimination is not a good method to synthesize γ -lactams.

Corresponding author.

Based on the reaction of conjugated dienes with aryl and alkenyl halides in the presence of nucleophiles, 9 we tried the Pd(0) catalyzed cyclization of enyne precursor 3, expecting that the finally formed π -allyl palladium complex could be quenched by the attack of a nucleophile to regenerate the Pd(0) species.

Treatment of the acyclic compound 3 with different aryl iodides and nitrogen nucleophiles in the presence of a catalytic amount of $Pd(OAc)_2$ and PPh_3 in MeCN afforded the corresponding cyclization products in reasonable yields in most cases (Table 1).¹⁰ A by-product produced by the Diels-Alder reaction of the starting compound 3 was also isolated in 5-8% yield. The nucleophiles regionselectively attacked the site remote from the lactam ring and the double bond formed from the π -allyl palladium complex has the E configuration as determined by NOESY spectra.

When an aryl iodide with an electron-withdrawing group was reacted with 3, the Diels-Alder adduct 5 was obtained as the major product with a low yield of 4. Various aliphatic amines including primary and secondary ones proved to be good nucleophiles giving good yields of the corresponding α -alkylidene- γ -lactams. On the contrary, aromatic amines are poor nucleophiles in this reaction and afford only by-product 5. Carbon nucleophiles, such as dimethyl malonate, can also give the corresponding α -alkylidene- γ -lactam in 55% yield using $Pd_2(dba)_3 \cdot CHCl_3/PPh_3$, BSA/KOAc system and THF as the solvent.

The following mechanism is proposed: oxidative addition of the aryl iodide to palladium(0) generates ArPdI which then undergoes tandem insertion into the triple and the double bonds of compound 3, successively, to give intermediate $\bf A$, which is in equilibrium with the π -allyl palladium(II) intermediate $\bf B$ and leads to the product after nucleophilic attack.

Table 1
Palladium(0) catalyzed cyclization of 3^a

entry	amine	Ar	product	4 yield% ^b
1	Piperidine	Ph	4a	71°
2	Piperidine	p-MeO-C ₆ H ₄ -	4b	67^c
3	Piperidine	p-Me-C ₆ H ₄ -	4c	68°
4	Piperidine	p-NO ₂ -C ₆ H ₄ -	4d	27^d
5	Morpholine	Ph	4e	66°
6	Pyrrolidine	Ph	4f	71 ^c
7	Benzylamine	Ph	4g	67°
8	Isobutylamine	Ph	4f	70°
9	Butylamine	Ph	4g	68^{c}
10	Aniline	Ph	5	78e

- a. Reaction codition: 3 (0.5mmol), amine (0.6 mmol), ArI (0.6 mmol), Pd(OAc), (0.05 mmol), PPh₃ (0.1 mmol), MeCN (2 ml), 80°C, 2 hrs.
- b. Isolated yield.
- c. Together with 5-8% yield of by-product 5.
- d. Together with 51% yield of 5.
- e. Only 5 was obtained.

In summary, we have developed a tandem palladium catalyzed cyclization to synthesize the α -alkylidene- γ -lactams in reasonable yields. The simple operation, ready availability of the starting materials and a high selectivity in preparing α -alkylidene- γ -lactams analogues are noteworthy.

Acknowledgements

We thank the National Natural Science Foundation of China and Chinese Academy of Sciences for financial support.

References

- Moody, C. M.; Young, D. W. Tetrahedron Lett. 1994, 35, 7277-7280. Nilsson, B. M.; Ringdahl, B.; Hacksell, V. J. Med. Chem. Res. 1990, 33, 580-584. Bergann, R.; Gericke, R. J. Med. Chem. 1990, 33, 492-503.
- Belaud, C.; Roussakis, C.; Latournoux, Y.; Alami, N. E.; Villieras, J. Synth. Commun. 1985, 15, 1233-1243. Kornet, M. J. J. Pharm. Sci. 1979, 68, 350-353. Ikuta, H.; Shirota, H.; Kobayash, Y. Y.; Yamada, K.; Katayama, K. J. Med. Chem. 1987, 30, 1995-1998.
- 3. Patra, R.; Maiti, S. B.; Chatterjee, A.; Chakravarty, A. K. Tetrahedron Lett. 1991, 32, 1363-1366.

- Alami, N. E.; Belaud, C.; Villieras, J. Synth. Commun. 1988, 18, 2073-2081. Tanaka, K.; Yoda, H.; Kaji, A. Synthesis 1985, 84-86. Mori, M.; Washioka, Y.; Urayama, T.; Yoshiura, K.; Chiba, K.; Ban, Y. J. Org. Chem. 1983, 48, 4058-4067. Bowman, W. R.; Heaney, H.; Jordan, B. M. Tetrahedron Lett. 1988, 29, 6657-6660.
- 5. Lu, X.; Zhu, G.; Wang, Z. Synlett 1998, 2, 115.
- 6. Jiang, H.; Ma, S.; Zhu, G.; Lu, X. Tetrahedron 1996, 52, 10945-10954.
- 7. Yamamoto, T.; Saito, O.; Yamamoto, A. J. Am. Chem. Soc. 1981, 103, 5600-5602.
- 8. Albelman, M. M.; Oh, T.; Overman, L. E. J. Org. Chem. 1987, 52, 4130-4133. Albeman, M. M.; Overman, L. E. J. Am. Chem. Soc. 1988, 110, 2328-2329.
- Patel, B. A.; Dickrson, J. E.; Heck, R. F. J. Org. Chem. 1978, 43, 5018–5019. Stakem, F. G.; Heck, R. F. J. Org. Chem. 1980, 45, 3584–3593. Fischetti, W.; Mak, K. T.; Rheingold, A. L.; Heck, R. F. J. Org. Chem. 1983, 48, 948–955. D'Connor, J. M.; Stullman, B. J.; Clark, W. G.; Shu, Y. L.; Spada, P. E.; Stevenson, T. M.; Dieck, H. A. J. Org. Chem. 1990, 55, 3447–3450.
- 10. All the products were characterized by spectral data. Typical ^{1}H NMR data of compound 4a: ^{1}H NMR (300 MHz, CDCl₃) δ : 0.90 (d, J=6.7 Hz, 3H), 1.37 (m, 2H), 1.50 (m, 4H), 2.24 (m, 4H), 2.61 (d, J=1.0 Hz, 3H), 2.65 (m, 1H), 2.85 (dd, J₁=9.3 Hz, J₂=1.3 Hz, 1H), 3.43 (m, 2H), 4.40 (d, J=14.7 Hz, 1H), 4.68 (d, J=14.7 Hz, 1H), 4.96 (ddd, J₁=15.3 Hz, J₂=8.0 Hz, J₃=0.6 Hz, 1H), 5.20 (dd, J₁=15.2 Hz, J₂=6.9 Hz, 1H), 7.17-7.35 (m, 10H); MS: 415 (M+1, 3.25), 399 (100.00), 91 (89.87), 124 (66.50), 112 (44.37), 400 (30.88), 329 (27.58); IR: 2931, 1675, 1440, 703; HRMS: calcd: 414.2671, found: 414.2651. The stereochemistry of the double bonds on α and β substituents of 4a are both E configurations determined by NOESY spectra.
- 11. When dimethyl sodiomalonate was taken as the nucleophile, only 18% yield of the corresponding α-alkylidene-γ-lactam was obtained.